Neutrino Oscillations vs Charged-Lepton Oscillations

Question: Why don't we see μ ->e oscillations?

(Note: μ ->e oscillations would be very rapid due to their large Δm^2)

Neutrino Oscillations vs Charged-Lepton Oscillations

Question: Why don't we see μ ->e oscillations?

(Note: μ ->e oscillations would be very rapid due to their large Δm^2)

Answer: Neutrinos are identified by their flavors, while charge leptons are identified by their mass!

Neutrinos are identified by their flavor!

$$v_{e} = \cos\theta v_{1} + \sin\theta v_{2}$$

$$v_{\mu} = -\sin\theta v_{1} + \cos\theta v_{2}$$

Useful!

$$v_{1} = \cos\theta v_{e} - \sin\theta v_{\mu}$$

$$v_{2} = \sin\theta v_{e} + \cos\theta v_{\mu}$$

Not Useful!

When we measure neutrinos in oscillation experiments, we are insensitive to their mass; however, we are very sensitive to their flavor!

Charged Leptons are identified by their mass!

$$l_{\alpha} = \cos\theta l_{1} + \sin\theta l_{2}$$

$$l_{\beta} = -\sin\theta l_{1} + \cos\theta l_{2}$$

Not Useful!

$$e = l_1 = \cos\theta l_{\alpha} - \sin\theta l_{\beta}$$
$$\mu = l_2 = \sin\theta l_{\alpha} + \cos\theta l_{\beta}$$

Useful!

When we measure charged leptons, we are insensitive to their flavor; however, we are very sensitive to their mass!

Neutrinos Won't Oscillate if their Masses are Fixed!

Consider
$$\pi^+ \rightarrow \mu^+ \nu_{\mu}$$

- I. If the μ^+ is unmeasured => $\nu_{\mu} = -\sin\theta \ \nu_{1} + \cos\theta \ \nu_{2}$ Neutrino Oscillations!
- II. If the μ^+ is measured so precisely that the ν_{μ} mass is known => $\nu_2 = \sin\theta \ \nu_e + \cos\theta \ \nu_{\mu}$ No Neutrino Oscillations!